Weyl Groups of Hamiltonian Manifolds, I

نویسنده

  • Friedrich Knop
چکیده

Let K be a compact connected Lie group and M a compact Hamiltonian K-manifold, i.e., a symplectic K-manifold equipped with a moment map μ : M → k. In this paper, we determine Col(M): the set of all functions on M which Poisson commute with all Kinvariant functions. For this, we construct a finite reflection group WM and show that Col(M) is completely determined by μ(M) and WM . More precisely, from μ(M) and WM we construct a topological space Y equipped with a differentiable structure (in fact, Y is semi-analytic) and a surjective map μ̂ : M → Y such that Col(M) consists exactly of the pull-back functions via μ̂. It is easy to see that, conversely, C(M) is the Poisson centralizer of Col(M). Thus we obtain a symplectic dual pair

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

q-oscillators, (non-)Kähler manifolds and constrained dynamics

It is shown that q-deformed quantummechanics (systems with q-deformed Heisenberg commutation relations) can be interpreted as an ordinary quantum mechanics on Kähler manifolds, or as a quantum theory with second (or first)-class constraints. 1. The q-deformed Heisenberg-Weyl algebras [1], [2] exhibiting the quantum group symmetries [3],[4] have attracted much attention of physicists and mathema...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

Some combinatorial aspects of finite Hamiltonian groups

In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...

متن کامل

THE SPECTRUM OF k-FORM SCHRÖDINGER LAPLACIANS ON CONFORMALLY CUSP MANIFOLDS

We describe the spectrum of the k-form Laplacian on conformally cusp Riemannian manifolds. The essential spectrum is shown to vanish precisely when the k and k − 1 de Rham cohomology groups of the boundary vanish. We give Weyl-type asymptotics for the eigenvalue-counting function in the purely discrete case. In the other case we analyze the essential spectrum via positive commutator methods. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997